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Motivation

Monte-Carlo Tree Search algorithms
• rely on a tree structure to represent their value estimates.

• performance independent of the size S of the state space
Tabular RL (UCBVI)

√
HSAn

MCTS (OPD) n− log 1
γ
/ logA
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Limitation

• There can be several paths to the same state s

• s is represented several times in the tree
• No information is shared between these paths
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Motivating example

Not accounting for state similarity hinders exploration

Sparse gridworld: reward of 0 everywhere
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Planners behaviours

Uniform planning in the space of sequences of actions
OPD

OPD, budget of n = 5460 moves
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Motivating example 2/2

Concentration
• Does not lead to uniform exploration of the state space

• 2D random walk ∼ Rayleigh distribution P(d) = 2d
H e−

−d2
H
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Goal

Better exploit this wasted information

• By merging similar states
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Better exploit this wasted information
• By merging similar states into a graph
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Questions

• How to adapt MCTS algorithms to work on graphs?
• Can we quantify the benefit of using graphs over trees?
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MCTS for Deterministic MDPs

𝜕𝑇𝑛

𝑇𝑛
∘

Optimism in the Face of Uncertainty: OPD

1. Build confidence bounds L(a) ≤ V (a) ≤ U(a)
2. Follow optimistic actions, from the root down to a leaf b
3. Expand the leaf b ∈ ∂T n
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MCTS for Deterministic MDPs

𝜕𝑇𝑛+1

𝑇𝑛+1
∘

Optimism in the Face of Uncertainty: OPD

1. Build confidence bounds L(a) ≤ V (a) ≤ U(a)
2. Follow optimistic actions, from the root down to a leaf b
3. Expand the leaf b ∈ ∂T n
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On a graph...

𝒢n

𝜕𝒢𝑛

∘

Same principle: GBOP-D

1. Build confidence bounds L(s) ≤ V (s) ≤ U(s)
2. Follow optimistic actions until an external node s is reached
3. Expand the external node s ∈ ∂Gn

> We are guaranteed to expand any state only once.
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How to build the bounds L,U?

How to bound V (s) = sup
∑∞

t=0 γ
trt?

• Initialize with trivial bounds: L = 0, U = 1
1−γ

• Apply the Bellman operator B : V → maxaR(s, a) + γV (s ′)

L(a) ≤ B(L)(a) ≤ V (a) ≤ B(U)(a) ≤ U(a)

𝐵𝑛 ℬ𝑛

• Trees: Converges in dn steps
• Graphs: May converge in ∞ steps when there is a loop
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Analysis

Is GBOP-D more efficient than OPD?

Performance: rn = V ? − V (an)

Theorem (Sample complexity of OPD, Hren and Munos, 2008)

rn = Õ
(

n− log 1
γ
/log κ

)
,

where κ is a problem-dependent difficulty measure.

Theorem (Sample complexity of GBOP-D)

rn = Õ
(

n− log 1
γ
/log κ∞

)
,

where κ∞ is a tighter problem-dependent difficulty measure:

κ∞ ≤ κ
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Comparing difficulty measures

• κ∞ = κ if the MDP has a tree structure

• κ∞ < κ when trajectories intersect a lot

> actions cancel each-other out (e.g. moving left or right)
> actions are commutative (e.g. placing pawns on a board)

Illustrative example: 3 states, K > 2 actions

𝑟∗ 𝑟−

𝑟+

0

𝑟∗

κ∞ = 1 < κ = K − 1
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Experiment: sparse gridworld

Rewards in a ball around (10, 10) of radius 5, with quadratic decay
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Extension to stochastic MDPs

Extension to stochastic MDPs
• Use state similarity to tighten the bounds L ≤ V ≤ U.
• We adapt MDP-GapE (Jonsson et al., 2020) to obtain GBOP
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Experiment: stochastic gridworld

Noisy transitions with probability p = 10%
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Exploration-Exploitation score

S =
n∑

t=1
d(st , s0)︸ ︷︷ ︸
Exploration

− d(st , sg)︸ ︷︷ ︸
Exploitation
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Sailing Domain (Vanderbei, 1996)
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budget n
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KL-OLOP

MDP-GapE

UCT

Effective branching factor κe :
• κe ≈ 3.6, for BRUE, KL-OLOP, MDP-GapE, UCT
• κe ≈ 1.2 for GBOP, which suggests our results may still hold
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Thank You!
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