

GROUPE RENAULT

Monte-Carlo Graph Search: the Value of Merging Similar States

Edouard Leurent^{1,2}, Odalric-Ambrym Maillard¹

¹Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 – CRIStAL, ²Renault Group

Monte-Carlo Tree Search algorithms

• rely on a tree structure to represent their value estimates.

Monte-Carlo Tree Search algorithms

• rely on a tree structure to represent their value estimates.

• performance independent of the size S of the state space Tabular RL (UCBVI) \sqrt{HSAn} MCTS (OPD) $n^{-\log \frac{1}{\gamma}/\log A}$

Limitation

• There can be several paths to the same state s

• *s* is represented several times in the tree

Limitation

• There can be several paths to the same state s

- *s* is represented several times in the tree
- No information is shared between these paths

Not accounting for state similarity hinders exploration

Not accounting for state similarity hinders exploration Sparse gridworld: reward of 0 everywhere

└→ Uniform planning in the space of sequences of actions

OPD, budget of n = 5460 moves

• Does not lead to uniform exploration of the state space

- Does not lead to uniform exploration of the state space
- 2D random walk \sim Rayleigh distribution $P(d) = \frac{2d}{H}e^{-\frac{-d^2}{H}}$

- Does not lead to uniform exploration of the state space
- 2D random walk \sim Rayleigh distribution $P(d) = \frac{2d}{H}e^{-\frac{-d^2}{H}}$

- Does not lead to uniform exploration of the state space
- 2D random walk \sim Rayleigh distribution $P(d) = \frac{2d}{H}e^{-\frac{-d^2}{H}}$

budget of 5460 samples, maximum distance d = 6

• By merging similar states

• By merging similar states into a graph

• By merging similar states

Questions

• How to adapt MCTS algorithms to work on graphs?

• Can we quantify the benefit of using graphs over trees?

Optimism in the Face of Uncertainty: OPD

Optimism in the Face of Uncertainty: OPD 1. Build confidence bounds $L(a) \le V(a) \le U(a)$

Optimism in the Face of Uncertainty: OPD

- 1. Build confidence bounds $L(a) \leq V(a) \leq U(a)$
- 2. Follow optimistic actions, from the root down to a leaf b

Optimism in the Face of Uncertainty: OPD

- 1. Build confidence bounds $L(a) \leq V(a) \leq U(a)$
- 2. Follow optimistic actions, from the root down to a leaf b
- 3. Expand the leaf $b \in \partial T_n$

Optimism in the Face of Uncertainty: OPD

- 1. Build confidence bounds $L(a) \leq V(a) \leq U(a)$
- 2. Follow optimistic actions, from the root down to a leaf b
- 3. Expand the leaf $b \in \partial T_n$

Same principle: GBOP-D

Same principle: GBOP-D 1. Build confidence bounds $L(s) \le V(s) \le U(s)$

Same principle: GBOP-D

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached

Same principle: GBOP-D

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached
- 3. Expand the external node $s \in \partial \mathcal{G}_n$

Same principle: GBOP-D

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached
- 3. Expand the external node $s \in \partial \mathcal{G}_n$

> We are guaranteed to expand any state only once.

Same principle: GBOP-D

- 1. Build confidence bounds $L(s) \leq V(s) \leq U(s)$
- 2. Follow optimistic actions until an external node s is reached
- 3. Expand the external node $s \in \partial \mathcal{G}_n$

> We are guaranteed to expand any state only once.

How to bound $V(s) = \sup \sum_{t=0}^{\infty} \gamma^t r_t$?

• Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$

How to bound $V(s) = \sup \sum_{t=0}^{\infty} \gamma^t r_t$?

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B: V \rightarrow max_aR(s, a) + \gamma V(s')$

 $L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$

How to bound $V(s) = \sup \sum_{t=0}^{\infty} \gamma^t r_t$?

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B: V \rightarrow max_aR(s, a) + \gamma V(s')$

 $L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$

How to bound $V(s) = \sup \sum_{t=0}^{\infty} \gamma^t r_t$?

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B: V \rightarrow max_aR(s, a) + \gamma V(s')$

 $L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$

• **Trees**: Converges in *d_n* steps

How to bound $V(s) = \sup \sum_{t=0}^{\infty} \gamma^t r_t$?

- Initialize with trivial bounds: L = 0, $U = \frac{1}{1-\gamma}$
- Apply the Bellman operator $B: V \rightarrow max_aR(s, a) + \gamma V(s')$

 $L(a) \leq B(L)(a) \leq V(a) \leq B(U)(a) \leq U(a)$

- **Trees**: Converges in *d_n* steps
- Graphs: May converge in ∞ steps when there is a loop

Is GBOP-D more efficient than OPD?

Analysis

Is GBOP-D more efficient than OPD? Performance: $r_n = V^* - V(a_n)$

Analysis

Is GBOP–D more efficient than OPD? Performance: $r_n = V^* - V(a_n)$

Theorem (Sample complexity of OPD, Hren and Munos, 2008)

$$r_n = \widetilde{\mathcal{O}}\left(n^{-\log \frac{1}{\gamma}/\log \kappa}\right),$$

where κ is a problem-dependent difficulty measure.

Analysis

Is GBOP–D more efficient than OPD? Performance: $r_n = V^* - V(a_n)$

Theorem (Sample complexity of OPD, Hren and Munos, 2008)

$$r_n = \widetilde{\mathcal{O}}\left(n^{-\log \frac{1}{\gamma}/\log \kappa}\right),$$

where κ is a problem-dependent difficulty measure.

Theorem (Sample complexity of GBOP-D)

$$r_n = \widetilde{\mathcal{O}}\left(n^{-\log \frac{1}{\gamma}/\log \kappa_\infty}\right),$$

where κ_{∞} is a tighter problem-dependent difficulty measure:

 $\kappa_{\infty} \leq \kappa$

• $\kappa_{\infty} = \kappa$ if the MDP has a tree structure

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot
 - > actions cancel each-other out (e.g. moving left or right)

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot
 - > actions cancel each-other out (e.g. moving left or right)
 - > actions are commutative (e.g. placing pawns on a board)

- $\kappa_{\infty} = \kappa$ if the MDP has a tree structure
- $\kappa_{\infty} < \kappa$ when trajectories intersect a lot
 - > actions cancel each-other out (e.g. moving left or right)
 - > actions are commutative (e.g. placing pawns on a board)

Illustrative example: 3 states, K > 2 actions

Rewards in a ball around (10, 10) of radius 5, with quadratic decay

Extension to stochastic MDPs

- Use state similarity to tighten the bounds $L \leq V \leq U$.
- We adapt MDP-GapE (Jonsson et al., 2020) to obtain GBOP

Noisy transitions with probability p = 10%

n = 5640 samples

Exploration-Exploitation score

Sailing Domain (Vanderbei, 1996)

Sailing Domain (Vanderbei, 1996)

Effective branching factor κ_e :

- $\kappa_e \approx 3.6$, for BRUE, KL-OLOP, MDP-GapE, UCT
- $\kappa_{\rm e} \approx 1.2$ for GBOP, which suggests our results may still hold

Thank You!

